MITSUBISHI
 ELECTRIC

Changes for the Better
LOW VOLTAGE AIR CIRCUIT BREAKERS

SUper wror630AF~6300AF

Empowering Industries

Mitsubishi Presents the WS Series, Satisfied with the High Demands of the 21st Century Global Market.

Line up (630 to 6300A)

Rated current (A)	630	1000	1250	1600	2000	2500	3200	4000	5000	6300
	AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA					

Product Features

Best Solution
 Through Flexible and Various Options, To be Built up the Suitable Functions.

Electronic Trip Relay

Main setting module

1

With interchangeable \& add-on modules, flexible functions built up.
WS1
WS2 General use
WS3
LTD+STD + INST / MCR

WM1 Generator WM2 protection use	WB1 WB2 WB3	Special use

Note : *For optimum protective coordination with upstream and/or downstream protective devices such as fuses and OCRs, WF relay (WF1/WF2/WF3) are provided.
As for the details about WF relay, please make inquiries.

Optional setting module

With optional setting modules, GFR, ER etc are added easily.

Note (1) : Combination with ZCT
(2) : With "N5" optional module, Neutral pole protection will be changed from 100% (standard) to 50%

Power supply

It is neccessary for Display and LEDs. (see page 19, 20.)

100-240V AC•DC

24-60V DC
100-240V AC / 100-125V DC with output contact
24-60V DC with output contact
100-240V DC with output contact (SSR)

Additional function

EX1	Extension module	DP1 Display	TAL Temperature alarm		
		The TAL is operated by an unusual temperature of the breaker contacts. (see page 32)			
Module for display and communication	Current, Voltage,Power, Harmonics, Trip current,etc.	MCR-SW MCR switch			
Note : The VT unit is required to					
display the measured data					
except the load current.				\quad	Making current release is
:---:					
possible with MCR switch.					
(see page 32)					

■ Protection with power from Internal CT The Over current protection and Ground fault protection can work with power from Internal CT, even if the control power source is off. For the Trip indicator LED and the additional functions like EX1, DP1/DP2, TAL and Network, the control power source is required.

- Secure protection by actual effective value detection

For spread of electronic devices such as inverter, the actual effective value detection method is adopted, which is strong against deformed waveform and is detected from each phase independently .

Network

Interface unit

CC-Link® PROFIBUS-DP

Communication items

Measurement / Alarm	Current, Voltage ${ }^{\star}$, Power*, Harmonics*, etc.
	Tripping cause, Tripping current
	Alarm (PAL, TAL, Self diagnosis, etc.)
Breaker status	ON and OFF by CC and SHT
	Spring charge by MD
	ON or OFF or Charge state
	Drawout position
	ETR Setting value

Note*: VT unit is required to display the measured data except load current.

Electronic Trip Relay type code

Product Features

■ High-Performance High-Reliability
 The safety of valuable circuits can be securely maintained.

Higher short circuit protection performance by improving breaking capacity

In case of 690V AC, Icu = Ics improved

from 50 kA to 65 kA for AE630-SW~AE2000-SWA
from 50 kA to 75 kA for AE2000-SW~AE4000-SWA
from 50 kA to 85 kA for AE4000-SW~AE6300-SW

Higher safety by improving insulation performance

Rated impulse withstand voltage (Uimp) for the main circuit is improved from 8 kV to 12 kV .

Wide coordination range by improving rated short-time withstand current

Icw (1s) improved
from 65 kA to 75 kA for AE2000-SW~AE4000-SWA
from 85 kA to 100 kA for AE4000-SW~AE6300-SW

Uimp (Rated impulse withstand voltage)

Higher reliability by High operating durability

- Mechanical

AE-SW series are sharply improved in mechanical durability compared to the former model.

- Customer Friendly Convenience for Customer

3 sizes

Replacement from the former model (AE-SS)

- Due to the same installation dimension and outline dimension, the former model (AE-SS) can be replaced with AE-SW series.
\square On the replacement of Drawout type, the Drawout fame (Cradle) for AE-SS have to be replaced with one for AESW.

AE-SW can be installed to the existing connection bus bar without any special connection kit.
(Except AE2000-SWA and AE4000-SWA)

Replacement from the old model (AE-S)

For the replacement from the old model (AE-S), the special adapter for AE-SW is prepared. (It is available for Drawout type only.) For details, please contact us separately.

Zero arc space

Arc exhaust to the outside of the breaker is drastically reduced for safer operation.
(For AE630-SW~AE4000-SWA models, 600V AC or less) (refer to page 56 : Insulation distance)

Compact size AE2000-SWA!

The compact AE2000-SWA can reduce the panel size.

Reverse connection available

Line and Load is not defined on the Main circuit terminals. Therefore, reverse connection is available without any limitation.

Appearance and Product structure

Fixed type

AE-SW Series

AE1600-SW 3P

1) Arc extinguishing chamber
(2) Control circuit terminal block
(3) Electronic trip relay
(4) OFF button
(5) ON button
2) Padlock hook
(7) Charging indicator
(ON/OFF indicator
(9) Manual reset button(Optional)

In case of the fixed type,Lifting hooks (HP) are attached.

Drawout type

(1) Cradle
(2) Control circuit terminal block
(3) Lifting hole
(4) Charging handle
(5) Drawout position indicator
(6) Extension rail
(7) Position lock
(8) Aperture for the drawout handle
(9) Drawout handle

In case of the drawout type, Drawout handle is attached.

Skeleton

Product configuration

Type
AE630-SW
AE1000-SW
AE1250-SW
AE1600-SW
AE2000-SWA
AE2000-SW
AE2500-SW
AE3200-SW
AE4000-SWA
AE4000-SW
AE5000-SW
AE6300-SW

Standard
IEC 60947-2
EN 60947-2(CE)
VDE
JIS C 8201-2-1
GB 14048.2(CCC)
(Marine Approvals) LR GL BV DNV ABS CCS NK

6	7	8	9
Mechanical accessories	Electronic trip relay	Relay accessories	Network
Push button cover Counter Cylinder lock Terminal cover Door frame Dust cover Interphase barrier Mechanical interlock	General use WS type Generator protection use WM type Special use WB type Protective coordination use WF type	Extension module Display Temperature alarm MCR switch Neutral CT External ZCT VT unit	CC-Link® Interface unit PROFIBUS-DP Interface unit MODBUS® Interface unit I/O unit

Product Specification

- Specification

(Note 1) This is the Icu value when the bare main body and the external relay are combined.
(Note 2) The number of operating cycles without rated current also include the number of operating cycles with rated current.
(Note 3) AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW apply for only vertical terminal of connecting terminal.
(Note 4) This value is max. operating cycle for just ACB body not including any accessories.
(The max. operating cycles for the accessories like AX, MD, CC, SHT and UVT are half of this value.)
(Note 5) Products with low rating types is available.

AE 630-SW 3 kinds of products with low rating types is available.
-250-275-300-325-350-375-400-425-450-475-500(CT 500A)
-157.5-173.3-189-204.8-220.5-236.3-252-267.8-283.5-299.3-315(CT 315A)

- 125-137.5-150-162.5-175-187.5-200-212.5-225-237.5-250(CT 250A)

AE 2000-SW 2 kinds of products with low rating types is available.

- 800-880-960-1040-1120-1200-1280-1360-1440-1520-1600(CT 1600A) \cdot. $625-687.5-750-812.5-875-937.5-1000-1062.5-1125-1187.5-1250$ (CT 1250A)

AE2000-SWA

000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA
2000	2000	2500	3200	4000
	1000			
	690			
	12			
	3			
	3, 4			
2000	2000 (Note 5)	2500	3200	4000
$\begin{aligned} & 100-1200-1300- \\ & 500-1600-1700- \\ & 0-1900-2000 \end{aligned}$	$\begin{array}{\|l} 1000-1100-1200-1300- \\ 1400-1500-1600-1700- \\ 1800-1900-2000 \text { (Note 5) } \end{array}$	1250-1375-1500-1625-1750-1875-2000-2125-2250-2375-2500	$1600-1760-1920-2080-$ $2240-2400-2560-2720-$ $2880-3040-3200$	2000-2200-2400-2600-2800-3000-3200-3400-3600-3800-4000
$\leq \mathrm{Ir} \leq 2000$	$800 \leq \operatorname{lr} \leq 2000$	$1600 \leq$ Ir ≤ 2500	$2000 \leq \operatorname{lr} \leq 3200$	$2500 \leq \operatorname{Ir} \leq 4000$
2000	2000	2500	3200	4000

AE4000-SW	AE5000-SW	AE6300-SW
4000	5000	6300
1000		
690		
12		
3		
3, 4 (HN, FN) (Note 7)		
4000	5000	6300
$2000-2200-2400-2600-$ $2800-3000-3200-3400-$ $3600-3800-4000$	$\begin{gathered} 2500-2750-3000-3250- \\ 3500-3750-4000-4250- \\ 4500-4750-5000 \end{gathered}$	3150-3465-3780-4095-4410-4725-5040-5355-5670-5985-6300
$2500 \leq \operatorname{lr} \leq 4000$	$3150 \leq \operatorname{lr} \leq 5000$	$4000 \leq \operatorname{lr} \leq 6300$
2000 (4000) (Note 8)	2500 (5000) (Note 8)	3150 (6300) (Note 8)

2000 (4000) (Note 8) 2500 (5000) (Note 8) 3150 (6300) (Note 8)
85
$130($ Note 9)
85
85
100
$65($ Note 1)
$65($ Note 1)
100%
187
187
286
187
187
220
143
143
100
85
85
$50($ Note 6)
80
1,000
1,000
$10,000(3 P) / 5,000(4 P)$

O (Note 3)

$414 \times 873 \times 290$		
$414 \times 1003(1133) \times 290($ Note 8)		
$480 \times 875 \times 368$		
160	160	160
$180(200)$ (Note 8)	$180(200)$ (Note 8)	$180(200)$ (Note 8)
233	233	240
$256(279)$ (Note 8)	$256(279)$ (Note 8)	$263(286)$ (Note 8)
118	118	125
133 (148) (Note 8)	$133(148)$ (Note 8)	$140(155)$ (Note 8)
$\bigcirc($ NK, LR, GL, BV, ABS)		

(Note 6) This value means the instantaneous breaking time at shortcircuit interruption. As for accessories (SHT, UVT), refer to page 13 and 14.
(Remark) All models conform the isolating function according to IEC 60947-2.
Reverse connection is possible.
(Note 7) 4(HN) means the neutral poles current capacity is 50% of the rated current, for 4 poles. $4(\mathrm{FN})$ means the neutral poles current capacity is 100% of the rated current, for 4 poles.
(Note 8) () shows the value for 4P FN type
(Note 9) Marine approval value is 138kA.
(Note 10) For WM relay, the current setting Ir can be set by 1A except AE630-SW low rating types "CT315A" and "CT250A". In case of AE630-SW with "CT315A" and "CT250A", it can be set by 0.1 A .

Connections

Over view (AE630~1600-SW, AE2000~3200-SW)

Connections Type	Horizontal Standard	Vertical (VT)	Front (FT)	Vertical terminal adapter (VTA)	Front terminal adapter (FTA)
Fixed type (FIX)		-	\qquad	FIX-VTA	FIX-FTA
Drawout type (DR)			DR-FT		DR-FTA

Over view (AE2000-SWA, AE4000-SWA, AE4000~6300-SW)

	Vertical (VT)	Standard
Fixed type (FIX)		
Drawout type (DR)		

- Connection image : AE2000-SWA, 3-pole type
- For AE2000-SWA, AE4000-SWA, AE4000SW, AE5000-SW and AE6300-SW models, vertical terminal only is available.

Available connections

Breakers Connections		AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA	AE4000-SW	AE5000-SW	AE6300-SW
Fixed type (FIX)	Horizontal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	FIX-VT	-	-	-	-	\bigcirc	-	-	-	\bigcirc	-	-	\bigcirc
	FIX-VTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	FIX-FTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
Drawout type (DR)	Horizontal	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	-	-	-	-
	DR-VT	\bigcirc											
	DR-FT	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	DR-VTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	DR-FTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-

Manual charging

The closing spring is charged by the manual charging handle. The breaker is closed when the ON button is pressed, and opened when the OFF button is pressed.

[^0]

Motor charging device (MD)

Option
1

The closing spring is charged by an electric motor. When the breaker is closed, the spring is charged automatically (ON-charge method.) The closing coil (CC) is required to remotely close, and the shunt trip device is required to remotely open the breaker.

- Manual charging operation is also possible.
- Pumping prevention is assured both electrically and mechanically.
- As the charging completion contact is separate from the electrical charging circuit, its function in the control scheme can be arranged as desired.

OFF charging method

OFF charging method is also available. The closing spring is charged automatically when the breaker is opened. This is available only by externally connecting b contact (AXb) of the auxiliary switch to the motor charging circuit in series. In case of DC power supply, please use high capacity auxiliary switch (HAX).

Polarity of DC circuit use

Rated voltage (V)	Applicable voltage range (V)	Applied voltage (V)	Inrush		Steady current (A)	Charging time (s)	Criterion for power requirement (VA)
			Current (Peak value) (A)	time (s)			
DC24	18~26.4	24	22	< 0.4	6	≤ 5	500
DC48	36 ~ 52.8	48	14	< 0.4	3		500
AC/DC	85 ~ 137.5	100	10(10)	$\begin{aligned} & \mathrm{AC}:<0.45 \\ & \mathrm{DC}:<0.25 \end{aligned}$	3(4)		700
100-125		125	12(12)		3(4)		1000
AC/DC	170 ~ 275	200	5(7)	$\begin{aligned} & \mathrm{AC}:<0.45 \\ & \mathrm{DC}:<0.25 \end{aligned}$	1(2)		700
200-250		250	6(8)		1(2)		1000

Values in parentheses show values for AE4000-SWA 4 pole and AE4000-SW ~
AE6300-SW.
We cannot manufacture AE4000-SWA 4 pole and AE4000-SW ~ AE6300-SW in DC 24 V and DC 48 V rating.

Charging completion contact rating

Voltage (V)	Current (A)			
			Resistance load	Inductive load
AC	460	5	2.5	
	250	10	10	
	125	10	10	
DC	250	3	1.5	
	125	10	6	
	30	10	10	

Accessories (for breaker unit)

8

Closing coil (CC)

2

The closing coil is a device to close the breaker by remote control.

- An interlock to prevent pumping is provided electrically.

Rated voltage (Applicable voltage range)	Operating voltage - Operating inrush current (VA)		Closing time (Note1)
	AC	DC	
$\begin{gathered} 24-48 \mathrm{~V} \text { DC } \\ (18 \sim 52.8) \end{gathered}$	-	24V DC 3.0A (100W)	$0.08 \mathrm{~s}$or less
	-	48V DC 6.0A (200W)	
$\begin{aligned} & 100-250 \mathrm{VAC} \cdot \mathrm{DC} \\ & \text { common } \\ & (75-275) \end{aligned}$	100 V AC 0.7A (100VA)	100 V DC 0.8A (100W)	
	250 V AC 1.7A (200VA)	250V DC 1.8A (250W)	

Diode rectifier is not used for control source $24 \sim 48 \mathrm{~V}$ DC.

Note 1) In case of double rating of rated voltage, it is the value for the lower rating.
(Example) In case of $24-48 \mathrm{VDC}$, it is operating time for 24 V DC.

- Closing time means time from the initial energization of the closing coil up to the complete closing of the main contacts.
- As CC is one-pulse driven, it is not necessary to insert AXb for burning prevention purposes. Inserting AXb will cause anti-pumping function to be ineffective.

Shunt trip device (SHT)

The shunt trip device is a device to open the breaker by remote control. A cut-off switch is included.

Rated voltage (Applicable voltage range)	Operating voltage • Operating inrush current (VA)		Operating time (Note1)
	AC	DC	
$\begin{aligned} & 24-48 \mathrm{~V} \text { DC } \\ & (16.8 \sim 52.8) \end{aligned}$	-	24V DC 2.5A (100W)	$\begin{aligned} & 0.04 \mathrm{~s} \\ & \text { or less } \end{aligned}$
	-	48V DC 6.0A (200W)	
100-250V ACcommon$(70-275)$	100 V AC 0.4 A (100VA)	100 V DC 0.6A (100W)	
	250 V AC 1.4 A (150VA)	250 V DC 1.6A (200W)	
$\begin{gathered} 380 \sim 500 \mathrm{~V} \text { AC } \\ (266 \sim 550) \end{gathered}$	380 V AC 0.5 A (250VA) 500 V AC 0.7 A (300VA)		

Note 1) In case of double rating of rated voltage, it is the value for the lower rating.
(Example) In case of $24-48 \mathrm{~V}$ DC, it is operating time for 24 V DC.
Note 2) Operating time for AE4000-SW~AE6300-SW is 0.05 s or less.

Under voltage trip device (UVT)

This is the device that automatically trips the breaker when the circuit voltage drops below the nominal voltage, and comprises UVT coil and UVT controller. There are 3 kinds of tripping time, INST, 0.5 s and 3.0 s . A trip terminal for forced OFF function is included as standard equipment.

Rated voltage	Frequency	operating time (time delay)	Pick-up voltage	Drop-out voltage	Trip function	Power consumption
100-120V AC	50/60Hz	$\begin{aligned} & \square \operatorname{lnst(0.2\mathrm {s})} \\ & \square 0.5 \mathrm{~s}(\text { Min. }) \\ & \square 3.0 \mathrm{~s}(\text { Min. }) \end{aligned}$	65~85V	45~70V	With open circuit of terminals.	Steady : 20VA Inrush : 200VA $\begin{gathered} \leqq 0.4 \mathrm{~S} \\ \left(\begin{array}{l} 100-120 \mathrm{~V} \mathrm{AC} \\ 24 \mathrm{~V} D \mathrm{DC} \\ \text { Invsh:100VA } \leqq 15 \end{array}\right) \end{gathered}$
200-240V AC			130~170V	90~140V		
$380-460 \mathrm{~V}$ AC			247~323V	171~266V		
24 V DC			$15.6 \sim 20.4 \mathrm{~V}$	10.8~16.8V		
48 V DC			$31.2 \sim 40.8 \mathrm{~V}$	21.6~33.6V		
100-110V DC			65~85V	45~70V		
120-125V DC			78~102V	54~84V		

Note1) In case of $380-460 \mathrm{~V} \mathrm{AC}$, the external unit is attached additionally.
Note2) The operating time is a guarantee value when it drops from 85% or more of rated voltage.
Note3) Time delay should be allowed for 1.5 s between applying the voltage to the UVT and closing the breaker.
Note4) If a remote trip function is required, remove the shorting bar (DT1 DT2) and connect a normally closed switch, rated 0.5A at 150VDC across them.
Note5) If a forced trip function is used, the shorting (signal input to DT1 and DT2) sould be held

UVT circuit diagram (In case of 380~460V AC

OCR alarm (AL) [Automatic reset type ${ }^{\text {Short-time operation }}$ (30ms)]

OCR alarm (AL) is provided as standard if ETR is equipped. OCR alarm (AL) is the contact (1a) of short-time operation $(30 \mathrm{~ms})$, being output when the breaker is tripped by the electronic trip relay. Two types of automatic reset type (standard) and manual reset type (optional) are available. When ordering, specify either automatic reset or Manual reset.
Switch rating

Voltage (V)		Current (A)	
		Resistive load	Inductive load
AC	240	3	2
	125	5	3
DC	240	0.2	0.2
	125	0.4	0.4
	30	4	3

Note1) Though the control power supply is unnecessary to activate OCR alarm (AL), the self-holding circuit is necessary since the contact output is activated for the short time (30 ms).
Note2) This works when tripping occurs in LTD, STD, INST, GFR or ER.
Note3) If any continuous output of OCR alarm (AL) is necessary, use the
trip indicator (TI) output contact of the electronic trip relay.

OCR alarm (AL) [mRE : Manual reset type]

On the manual reset type (optional), the gray manual reset button on the front side of the breaker will stick out to continuously output OCR alarm (AL) if the breaker is tripped by the electronic trip relay. After tripping, the breaker can not be turned on unless the manual reset button is pressed for resetting.

Auxiliary switch

Standard (AX) • High capacity type (HAX)
This is the contact that remotely indicates the ON or OFF status of the breaker.

- The a and b conacts may turn simultaneously to ON instantaneously at the time of changing the contact; Pay attention to the contact state when designing circuits.
- The chattering time at the time of contact ON-OFF is below 0.025 s

Accessories (for breaker unit)

Mechanical interlock (MI)

This is the device to prevent parallel charge of 2 or 3 units of breakers, and it can interlock the breakers mechanically without fail.
All combinations are available among any models from AE630-SW to AE6300-SW.
Please make inquiries about installation to AE4000-SW~AE6300-SW.
Further the interlock is possible among the different connection types or poles, such as fixed type or drawout type, 3 pole or 4 pole.
In combination with electric interlock, the higher safety interlock system can be secured.

- In case of drawout type,the interlock works at "CONNECTED" position, and in another position the interlock is released, which assures easy maintenance and inspection of the breaker.
- When turning OFF one breaker and then turning ON another breakers, please take an interval 0.5 seconds or more.
- MI for 3 breakers can not be installed by combining with Door Interlock (DI)

Condenser trip device (COT)

Even if the power supply fails, the breaker can be electrically opened by remote operation

within a definite time. This device is used in combination with the shunt trip device (SHT).

Type	COT110-W	COT220-W
Rated input voltage (V DC)	100/110	200/220
Rated frequency (Hz)	50-60	
Rated charging voltage (V DC) Note1	140/155	
Condenser capacity ($\mu \mathrm{F}$)	820	
Voltage range	70~125\%	
Power supply capacity (VA)	Max. 1	
Charging time (s)	Max. 1	
Trip limit time (s) Note2	30	
Withstand voltage (1minute)	2000 V AC	
Applicable SHT type (Rated voltage)	100-250V AC•DC	
As for outline dimensions, refer to page 51.		
Note 1: The rated charging voltage is the voltage stored during condenser saturation. It is continuously supplied by the rectified voltage of the rated $A C$ input voltage.		
te 2: The trip limit time means the time period in which the shunt trip device (SHT) can make a tripping operation once, even after the charged condenser with 100% supply voltage would be stopped to charge. It can be tripped up to 30 seconds.		
Note 3: Usage ambient temperature $-20^{\circ} \mathrm{C}$.	a range of m	C to min.

Dust cover (DUC)

Accessories(for drawout type)

Drawout interlock (standard equipment)

This is the safety device that prevents insertion and drawout operation. When the breaker is ON, the drawout handle cannot be inserted, and insertion and drawout operation cannot be done unless the OFF button is pressed.

Position lock (standard equipment)

This is the device that locks automatically the drawout mechanism at "TEST" or "CONNECTED" positions during insertion and drawout operation. When the lock plate is pushed in, lock is released and operation can be continued.

Outline dimensions (reference)

Padlock

Option

A padlock can be arranged at the lock plate. Thereby, it is possible to prevent the connection position from being changed unnecessarily. A padlock of $\phi 5$ should to be supplied by customer. As for outline dimensions of the padlock, please refer to the left figure.

Operating position of drawout type

Cell switch (CL)

This is the switch to show the drawout position (CONNECTED, TEST, and DISCONNECTED) of the breaker. An arbitrary combination up to 4 pieces is available.

Voltage (V)		Current (A)	
		Resistive load	Inductive load
AC	250	10	10
	125		
DC	250	3	1.5
	125	10	6
	30	10	10
Maximum contacts		Total 4c max.	

Standard pattern

	CL-C	CL-T	CL-D
CL1	1	-	-
CL2	1	-	1
CL3	1	1	1
CL4	2	1	1

Shorting b-contact (SBC)

When moving the breaker from the connected to the test positions, this contact is used to short circuit auxiliary switch (AXb) thus maintaining the correct sequence of operation of the external control circuit. When ordering, SBC with the same number of contacts as auxiliary switches (AXb) will be provided.

Switch rating

Voltage (V)		Current (A)	
	Resistive load	Inductive load	
AC	250	10	2
	125	10	3
DC	250	0.2	0.2
	125	0.4	0.4
	30	4	3

Refer to the Min. load range graph in Page 14.

Lifting hook(HP)

Option

This is the metal fitting to suspend the main body when the breaker is removed from the drawout cradle. The fixed type breaker is equipped with HP as standard.

Safety shutter(SST)

Option

The safety shutters cover the conductors (cradle side) and prevent contact with them when the breaker is drawn out.

Safety shutter lock(SST-Lock)

Option

This kit is used to lock the safety shutters using 2 padlocks (the padlocks to be customer's supply). The safety shutters close when the breakers drawn out to prevent accidental contact with the main contacts.

Mis-insertion preventor(MIP)

Option

This prevents other breakers than specified from inserting into the cradle, and max. 5 patterns are available.
Not available for AE4000-SW~AE6300-SW

Test jumper(TJ)

With the breaker taken out of its cradle, this device enables the breaker to be electrically opened and closed, and the operating sequence to be checked. 3 m length of cable is equipped as standard shipment.

Electronic trip relay(Feature)

Several measuring data (current, voltage, power etc) and alarms/can be displayed with this module.
Extension module (option)
This module is required when installed VT unit, display module and each interface unit.

Load current LED (standard)
This indicator shows the actual current-carrying level.
RUN and ERR. LED (standard)
This indicator displays the ETR situation (Run or Error)
E Trip indicator LED (standard)
This indicator displays the trip cause. (Self-holding type) If output contact for this Trip indicator is required, Power supply module should be selected from P3, P4 or P5.

OCR alarm (AL) (standard)

When tripped by Over current, Ground fault (GFR) and Earth leakage (ER), this device outputs alarm signal.
There are two types of OCR alarms. One is Automatic reset type with 30 ms one pulse output (standard) and the other is Manual reset type with self-holding (optional). For details, refer to Page 14.

Neutral pole overcurrent protection (NP) (standard)
When Harmonics in load current become higher, the current on Neutral pole may exceed the rated current. This Neutral pole overcurrent protection prevents the troubles caused by higher Harmonics.

Electronic trip relay (ETR) Type designation breakdown

Characteristic table

$11 \quad 2$	NA Nothing	$\begin{gathered} \mathrm{G} 1 \\ \text { Ground fault } \end{gathered}$	E1 Earth leakage	AP 2nd additional Pre-alarm	$\begin{gathered} \text { N5 } \\ \text { Neoutral pole } \\ 50 \% \text { protection } \end{gathered}$
WS General use instMch		$\begin{aligned} & -t_{4} \\ & + \end{aligned}$	$\begin{aligned} & -4_{1} \\ & t_{+}^{-} \end{aligned}$		$\overbrace{4}$
		$\begin{aligned} & -t_{t} \\ & +t_{t} \end{aligned}$	$\begin{aligned} & -t_{t} \\ & t_{+} \end{aligned}$		$: \cdot \frac{-4}{4}$
WB Special use INST/MCR			$\begin{gathered} t_{4} \\ t_{+} \end{gathered}$		
		$t_{i}^{1}-$	$t_{i}^{-1}-$	$\stackrel{H}{1-1}^{+-1}$	$:$

Power supply module
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Type } & \begin{array}{c}\text { Rated Voltage } \\ \text { (V) }\end{array} & \begin{array}{c}\text { Applicable } \\ \text { Voltage range } \\ \text { (V) }\end{array} & \begin{array}{c}\text { Criterion for Power } \\ \text { requirement } \\ \text { (VA) }\end{array} & \text { Alarm output } \\ \hline \text { P1 } & 100-240 \text { AC-DC } & 85-264 \text { AC-DC } & 15 & - \\ \hline \text { P2 } & 24-60 \text { DC } & 18-72 \text { DC } & 10 & - \\ \hline \text { P3 } & \begin{array}{c}100-240 \text { AC } \\ 100-125 ~ D C ~\end{array} & \begin{array}{c}85-264 \text { AC } \\ 85-138 ~ D C ~\end{array} & 15 & 6 \text { output contacts } \\ \hline \text { P4 } & 24-60 \text { DC } & 18-72 \text { DC } & 10 & 6 \text { output contacts } \\ \hline \text { P5 } & 100-240 \text { DC } & 85-264 \text { DC } & 15 & 6 \text { output contacts (SSR) }\end{array}\right]-$

Note1: Over current protection and ground fault protection operates without control power source.
Note2: Factory setting of 6 output contacts is as follows.

$\stackrel{(1)}{\text { LTD }}$	(2) STD/INST	$\begin{aligned} & \stackrel{3}{3} \\ & \text { G1/E1/AP } \end{aligned}$	$\stackrel{4}{4}$	$\begin{gathered} \text { (5) } \\ \text { TAL } \end{gathered}$	$\stackrel{(6)}{\text { ERR }}$
Self-holding	Self-holding	Refer to lower table	Automatic reset	Automatic reset	Automatic reset

ETR dial set	G1	E1	AP
TRIP side	Self-holding	Self-holding	-
ALARM side	Automatic reset	Automatic reset	Automatic reset

\rightarrow Contact capacity(Type P3 and P4)

Voltage(V)	Current (A)			
			Resistive load	Inductive load
	cos $\phi=1.0$	$\cos \phi=0.4$ $\mathrm{~L} / \mathrm{R}=0.7$		
AC	240	1	0.5	
	120	1	1	
DC	125	0.1	0.05	
	30	1	1	

\rightarrow Current capacity(Type P5)

Voltage(V)	Normal current (A)	Peak inrush current (A)	ON resistance (Ω) $($ max. $)$	
	240	0.1	0.3	5
	120	0.1	0.3	5
DC	240	0.1	0.3	5
	30	0.1	0.3	5

The output will be reset if it backs to
normal condition.

CT rating table

Note3: As for details of ratings, refer to page 9 and page 10.

Additional function

$L_{\square} \quad$ Extension module(EX1)	Network
\square \square Display(DP1) \square \square Display onto panel board(DP2)	$\square \square$ BIF-CC
\square	\square BIF-PR
\square BIF-MD	

Wire system (when EX1 is specified)
EX1-$\square \square 3 \phi 3 W$ \square \square \square \square \square Normal connection \square Reverse connection

Electronic trip relay (for general use : WS)

A	Trip indicator LED
B	Pre-alarm LED
C	Temperature alarm LED
D	Load current LED
E RUN LED	
F	ERR. LED
G	Current setting dial
H	Uninterrupted current setting dial
I	LTD time setting dial
J	STD pick-up setting dial
K STD time setting dial	
L	INST/MCR pick-up current setting dial
M	Optional setting module (P.29-31)
N	Pre-alarm current setting dial
O	RESET button (TEST L/S LOCK button)
P	TEST terminal

Note: The figure shows WS1 type with G1 module, Display (DP1) and MCR switch. G1, DP1 and MCR are optional equipments.

Relation of setting dial

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
G	Current setting	Ir	0.5 ~ 1.0 (0.05step) $\mathrm{x} \ln$ (CT rating)	-	1.0
H	Uninterrupted current	Iu	$0.8 \sim 1.0 \times \operatorname{lr}$ (0.02step), Pick-up current : $1.15 \times \mathrm{lu}$	$1.05 \times$ lu \cdots Non Pick-up $1.25 \times$ lu \cdots Pick-up	1.0
1	LTD time	TL	12-25-50-100-150s at lu $\times 2$	$\pm 20 \%$	150
J	STD pick-up current	Isd	$1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{lr}$	$\pm 15 \%$	10
K	STD time	Tsd	$\frac{0.5-0.4-0.3-0.2-0.1-0.06}{\left(1^{2} \mathrm{ON}\right)}-\frac{0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left(1^{2} \mathrm{t}\right. \text { OFF) }}$ at Isd x 1.5	$\pm 20 \%$ It operates in the range between 0.04 and 0.08 s when the time set at 0.06s.	0.5 (12t ON)
L	INST/MCR pick-up current	Ii	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW 16-12-10-8-6-4-2-2-4-6-8-10-12-16 x Ir AE4000-SW (INST) (MCR) WS1	$\pm 15 \%$	WS1 $\cdots 16$ (INST)
			AE2000-SWA, AE4000-SWA $\frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times \mathrm{Ir}$ AE5000-SW WS2		WS2...12 (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \frac{(\mathrm{MCR})}{\mathrm{Ir}}$ WS3		WS3..10 (INST)
N	Pre-alarm current	Ip	Iu x $0.68 \sim 1.0$ (0.04step) -OVER	$\pm 10 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL at lux 2 (after 1/2 TL, PAL contact output turns on.)	$\pm 20 \%$	-

■Operating characteristic curve (for general use : WS)

Electronic trip relay(for generator protection use:WM)

This WM relay is mainly used for the protection of generator on ship.
Current setting Ir (default value) is fixed at the value complying with the rating of generator, which should be indicated when placing an order.

A Trip indicator LED
B Pre-alarm LED
C Temperature alarm LED
D Load current LED
E RUN LED
F ERR. LED
G LTD pick-up current
H LTD time setting dial
I STD pick-up setting dial
J STD time setting dial
K INST/MCR pick-up current setting dial
L. Optional setting module (P.29~31)

M Pre-alarm current setting dial
N RESET button (TEST L/S LOCK button)

- TEST terminal

Note: The figure shows WM1 type with G1 module,
Display (DP1) and MCR switch.
G1, DP1 and MCR are optional equipments.

Relation of setting dial

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
-	Current setting	Ir	To be fixed at Factory default value in the available range, which shows in Page 9 and 10.	-	To be complied with ordering indication
G	LTD pick-up current	IL	1.0-1.05-1.1-1.15-1.2 x Ir	$\pm 5 \%$	1.15
H	LTD time	TL	15-20-25-30-40-60s at ll $\times 1.2$	$\pm 20 \%$	20
1	STD pick-up current	Isd	1.5-2-2.5-3-3.5-4-4.5-5 x Ir	$\pm 15 \%$	5
J	STD time	Tsd	$\frac{0.5-0.4-0.3-0.2-0.1-0.06}{\left(1^{2} \mathrm{t} \mathrm{ON}\right)} \frac{0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left(1^{2} \mathrm{t} \text { OFF }\right)}$ at Isd $\times 1.5$	$\pm 20 \%$ It operates in the range between 0.04 and 0.08 s when the time set at 0.06 s .	0.5 (12t ON)
K	INST/MCR pick-up current	Ii	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW $\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{\text { (INST) }} \times \mathrm{Ir}$ AE4000-SW $\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{(\text { INST })} \times \operatorname{lr}$	$\pm 15 \%$	WM1 $\cdots 16$ (INST)
			$\begin{aligned} & \text { AE2000-SWA, AE4000-SWA } \frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times \mathrm{Ir} \\ & \text { AE5000-SW } \end{aligned}$ WM2		WM2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \frac{(\mathrm{MCR})}{\mathrm{Ir}}$ WM3		WM3 $\cdots 10$ (INST)
M	Pre-alarm current	Ip	IL x $0.68 \sim 1.0$ (0.04step) -OVER	$\pm 5 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL at IL $\times 1.2$ (after 1/2 TL, PAL contact output turns on.)	$\pm 20 \%$	-

■Operating characteristic curve (for generator protection use : WM)

Electronic trip relay(for special use : WB)

This WB relay is effective for the combination with the external OCR without severely decreasing the breaking capacity.
Actually, if ACB is combined with the external OCR only without WB relay, its breaking capacity comes to be reduced drastically. (e.g. For AE1600-SW, it's reduced to 25kA.)

A Trip indicator LED
B Pre-alarm LED
C Temperature alarm LED
D Load current LED
E RUN LED
F ERR. LED
G Current setting dial
H INST/MCR pick-up current setting dial
I Pre-alarm current setting dial
J RESET button
K TEST terminal

Note: The figure shows WB1 type with MCR switch. MCR is optional equipment.

Relation of setting dial

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
G	Current setting	Ir	$0.5 \sim 1.0$ (0.05step) x In (CT rating)	-	1.0
H	INST/MCR pick-up current	li		$\pm 15 \%$	WB1 $\cdots 16$ (INST)
			AE2000-SWA, AE4000-SWA AE5000-SW $\frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times \mathrm{Ir}$ WB2		WB2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \times \mathrm{Ir}$		WB3 $\cdots 10$ (INST)
1	Pre-alarm current	Ip	Ir $\times 0.68$ ~ 1.0 (0.04step) -OVER	$\pm 10 \%$	OVER
-	Pre-alarm time	Tp	75 s at Ir x 2 (after 75s, PAL contact output turns on.)	$\pm 20 \%$	-

[^1]For WB relay, when Pre-alarm current lp is set at "OVER", the Ip value is "Ir x 1.15".

■Operating characteristic curve (for special use : WB)

Electronic trip relay (for protective coordination use : WF)

WF relay incorporates five kinds of LTD characteristics.
Protective coordination with upstream OCRs and/or Fuses can be more easily achieved.

■Operating characteristic curve

[LTD curve setting "a=2"]

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
G	Current setting	Ir	$0.5 \sim 1.0 \text { (} 0.05 \text { step) } \times \ln \text { (CT rating) }$ LTD pick-up current : 1.15 x Ir	1.10×1 r...Non Pick-up $1.20 \times \mathrm{Ir}$...Pick-up	1.0
H	LTD time	TL	1-2-3-4-5-6-8-10-12-15-18s at Ir $\times 4$	$\pm 30 \%$ (1.5\|〔⓪ad current<4lr) $\pm 20 \%$ (4lrsload current)	18
1	LTD curve setting	a	0.02-1-2-3-4	-	2
J	STD pick-up current	Isd	$1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{lr}$	$\pm 15 \%$	10
K	STD time	Tsd	$\frac{0.5-0.4-0.3-0.2-0.1-0.06}{\left(1^{2}+\mathrm{ON}\right)} \frac{0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left(1^{2} \mathrm{t} \text { OFF }\right)}$ at Isd x 1.5	$\pm 20 \%$ It operates in the range between 0.04 and 0.08 when the time set at 0.06 s .	0.5 (12t ON)
L	INST/MCR pick-up current	li	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW $\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{(\text { INST })}$ (MCR) Ir AE4000-SW WF1	$\pm 15 \%$	WF1 $\cdots 16$ (INST)
			AE2000-SWA, AE4000-SWA $\frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \frac{\text { (MCR) }}{\text { AE5000-SW }}$ WF2		WF2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \frac{(\mathrm{MCR})}{} \times \mathrm{Ir}$		WF3 $\cdots 10$ (INST)
N	Pre-alarm current	Ip	Ir x $0.68 \sim 1.0$ (0.04step) -OVER	$\pm 5 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL at Ir C 4 (after 1/2 TL, PAL contact output turns on.)	$\pm 30 \%$ ($1.5 \mid$ \|〔load current < 4 1 r) $\pm 20 \%$ (4lrsload current)	-

[^2]
■Operating characteristic curve (for protective coordination use : WF)

[LTD curve setting " $\mathrm{a}=0.02$ "]

[LTD curve setting "a=3"]

Note 1: LTD operating time tLTD is calculated by the following equations.
$\mathrm{tLTD}=\frac{(4 / 1.1155)^{-1}-1}{(/ 11.1155 \mathrm{r})^{\mathrm{a}}-1} \times \mathrm{TL}\left(\begin{array}{l}\mathrm{a}=\mathrm{LTD} \text { curve setting } \\ 1=\text { load current }(\mathrm{A}) \\ \mathrm{Ir}=0.5 \sim 1.0 \times \ln (\mathrm{A}) \\ \mathrm{TL}=1 \sim 18(\mathrm{~s})\end{array}\right)$
The accuracy of operating time is $\pm 30 \%$ ($1.5 \mathrm{Ir} \leqq$ load current $<4 \mathrm{lr}$) or $\pm 20 \%$ ($4 \mathrm{lr} \leqq$ load current)
LTD operating time is 0.8 s (FLAT) when the operating time becomes 0.8 s or less.
Note 3: When Tsd $=$ " 0.06 " setting, operating time is $0.04 \sim 0.08 \mathrm{~s}$.
[LTD curve setting " $\mathrm{a}=1$ "]

[LTD curve setting " $\mathrm{a}=4$ "]

Note 2: PAL operating time tPAL is calculated by the following equations.

The accuracy of operating time is $\pm 30 \%$ ($1.5 \mathrm{Ir} \leqq$ load current $<4 \mathrm{Ir}$) or $\pm 20 \%$ ($4 \mathrm{lr} \leqq$ load current)
PAL operating time is 0.5 s (FLAT) when the operating time becomes 0.5 s or less.

Electronic trip relay

Accessories

Ground fault protection(GFR)

Option
The ground fault protection (GFR) of several hundred amperes is possible. This function can be selected for trip and alarm (no trip). Power supply is necessary for this function, even if there is not
 power supply, it can function at $0.2 x$ In or higher.

Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
GFR pick-up current	Ig	$0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0 \times \mathrm{ln}$	$\pm 20 \%$	1.0
GFR time	Tg	$\frac{3-1.5-0.8-0.5-0.3-0.15-<0.1-\frac{<0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}{\text { TRIP }}}{\text { ALARM }}$(at $1.5 \times \mathrm{Ig})$	$\pm 20 \%$	3 s (TRIP)
alarm output	-	TRIP side : Self-holding/ALARM side : Automatic reset	-	TRIP side (Self-holding)

Neutral CT(NCT) ※Only use for AE-sw

The Neutral CT is used for ground fault protection when the 3 pole breaker is used on a 3 phase 4 wires system and for over current protection on N phase. Please use this CT in combination with ground fault protection (GFR). As for outline dimensions, refer to page 52.
The length of the cable (attached) for NCT is $2 m$.

GFR function block diagram (In case of 4pole breaker)

Block diagram with NCT function

NCT type name

NCT type name	ACB type name / CT rating		
NCT06	AE630-SW 630A		
NCT10	AE1000-SW 1000A		
NCT12	AE1250-SW 1250A	AE2000-SW 1250A	
NCT16	AE1600-SW 1600A	AE2000-SW 1600A	
NCT20	AE2000-SWA 2000A	AE2000-SW 2000A	
NCT25	AE2500-SW 2500A		
NCT32		AE3200-SW 3200A	
NCT40		AE4000-SWA 4000A	
AE4000-SW 4000A			
NCT50		AE5000-SW 5000A	
NCT63		AE6300-SW 6300A	

Refer to Outline dimensions in page 52.

Earth leakage protection(ER)

By combining the ETR with earth leakage protection (ER) and External ZCT, earth leakage protection is possible. Earth leakage protection, earth leakage tripping and earth leakage alarm can
 be selected. Control supply is necessary for this function.

Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
ER pick-up current	I $\Delta \mathrm{n}$	1 A-2A-3A-5A-10A	0 -30%	10 A
ER time	Te	$\frac{3-1.5-0.8-0.5-0.3-0.15-<0.1-<0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}{\text { TRIP }}$	$\pm 20 \%$	3 s (TRIP)
alarm output	-	TRIP side : Self-holding/ALARM side : Automatic reset	-	TRIP side (Self-holding)

External ZCT

This option is used to detect several amperes of earth leakage when use in combination with a electronic trip relay that has the earth leakage tripping (ER) option.
Two methods are available. The first is where the all load conductors pass through the ZCT. The other method uses a smaller ZCT through which the supply transformer's ground wire passes through to earth.

ZCT for load circuit

ZCT type name	ACB type name
ZCT163	AE630-SW ~ AE1600-SW 3-pole
ZCT323	AE630-SW \sim AE1600-SW 4-pole AE2000-SW \sim AE3200-SW 3-pole
ZCT324	AE2000-SW ~ AE3200-SW 4-pole

As for outline dimensions refer to page 52. Make choice of suitable ZCT in comformity to the BUSBAR size.

ZCT for transformer ground wire
ZT15B ZT30B ZT40B ZT60B ZT80B ZT100B
ZCT with primary conductors
ZCT type name ACB type name / Pole ZTA1200A AE630-SW / 3P, AE1000-SW / 3P ZTA2000A AE1250-SW / 3P, AE1600-SW / 3P AE2000-SWA / 3P, AE2000-SW / 3P

ER function block diagram (for load circuit method)

ER function block diagram (transformer ground wire method)

Electronic trip relay

Accessories

2nd Additional Pre-alarm (AP)

The Pre-Alarm (1st) function already installed in standard breaker, the 2nd additional Pre-Alarm
 function can be installed as option, thereby it is possible to monitor (observer) electric circuit in more detail by 2 nd additional Pre-Alarm function.

Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
2nd Additional Pre-alarm pick-up current	Ip2	0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0 x lu WS	$\pm 10 \%$ WS	1.0
		0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0 x IL WM	$\pm 5 \% \mathrm{WM}$	
2nd Additional Pre-alarm time	Tp2	$\frac{0.9-0.8-0.7-0.6-0.5-0.4-0.3 \times T L}{(\times \mathrm{TL})}-\frac{5-10-15-20-30-40-60 \mathrm{~s}}{(F L A T)}$	$\pm 20 \%$	0.9 (x TL)

<Pre-alarm timing chart>

PAL LED starts to blink at time when the actual current exceed the setting current and then after it passed a half of LTD time (TL) it starts to light and simultaneously the contact output starts. As for its operating time, refer to the Operating characteristic curves in Page 22, 24 and 26.

Neutral pole 50\% protection (N5)

Option

When used OA equipment or DC power source to bring the third higher harmonic in 3 phases 4 wires circuit, sometimes it comes to give the other peripheral equipments an electrical damage due to the superposition of the third higher harmonic on Neutral pole.
This Neutral Pole 50% Protection (N5) is useful to protect the other peripheral equipments from such an electrical damage and also to prevent some troubles with the Pre-Alarm function (AP).
Neutral pole overcurrent protection (operating at 100\% of rated current) come already equipped with ETR as standard features.
But, if the operation at 50% of rated current is required on Neutral pole, it become available with this optional module unit.

MCR switch (MCR-SW)

With this MCR switch, at the time of breaker closing from OFF to ON the INST (Instantaneous) characteristic works, and then after breaker is in closed (ON) position the INST characteristic becomes ineffective. This controlling function of INST characteristic is useful for the protection on the short-circuit fault at the time of closing and also for expanding the selective combination with branch breakers after closed.
The factory default setting of "INST/MCR pick-up current setting dial" is usually set at "INST", so if the function of this MCR switch is required, the dial should be changed to set to "MCR".

Temperature alarm (TAL)

When TAL sensor is installed in the breaker, temperature alarm is operative. When the temperature of main contact exceeds normal level, temperature alarm is indicated by LED on main setting module and also the output contact is made energize if power supply with output contact is installed. It is possible to know temperature rising which is caused by wear of main contact because TAL sensor is installed near main contact. When the temperature of main contact goes down to the normal level, temperature alarm turns off automatically.

Field test device (Y-2005)

The electronic trip relay can be checked by this field test device when the breaker is at test position or disconnect position. The breaker will trip when tested with this device.

Y-2005 specification

Input voltage	$100-240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ (available voltage range: $85-264 \mathrm{~V}$ AC)
Power consumption VA	100VA or less
Range of signal output	Voltage signal equivalent to $1 \% \sim 2500 \%$ of Rated current In (CT rating) (continuously adjustable). * The output at 100% of CT rating is 141 mV at 50 Hz or 170 mV at 60 Hz .
Test power output and trip check power output	30V DC 5W
Terminal for checking the signal output	The same signal as the signal output is output to the terminal on the back side (load impedance: $100 \mathrm{k} \Omega$ or more).
Stop signal input	"a" contact, "b" contact or test terminal (ETR)
Test items	LTD, STD, INST/MCR, GFR, PAL, PAL2 and Trip check * ER check is not available.
Signal level	Max. 2500\% of Rated current setting (Ir) (accuracy: $\pm 2.5 \%$ at CT rating)
Time counter	0.000s $\pm 2 \mathrm{~ms} \sim 999.999 \mathrm{~s} \pm 1 \%$
Working temperature range	$0 \sim 40^{\circ} \mathrm{C}$ (humidity: 85% Rh or less)
Storage temperature range	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (humidity: 85% Rh or less)
Dimensions	$220 \mathrm{~mm}(\mathrm{~W}) \times 150 \mathrm{~mm}(\mathrm{H}) \times 340 \mathrm{~mm}(\mathrm{D})$ (excluding protruding portions)
Weight	4.5 kg
Attachments	AC power cord, test cable, carry case

Electronic trip relay

Additional functions

By adding the extension module unit in ETR, additional functions like measuring, display and communication become available.

List of extension unit (Option)

Name	Type	
Extension module	EX1	Description
Display module (relay attachment)	DP1	Display module for ETR
Display module (panel attachment)	DP2	Display module for panel board
VT unit	VT	Module for measuring of voltage, active power and active energy
CC-Link® interface unit	BIF-CC	Interface unit for CC-Link®
PROFIBUS-DP interface unit	BIF-PR	Interface unit for PROFIBUS-DP
MODBUS® (RS-485) interface unit	BIF-MD	Interface unit for MODBUS® (RS-485)
I/O unit	BIF-CON	Module for breaker remote control (Interface unit is required)
Drawout position switch	BIF-CL	Switch for detecting the drawout position of the breaker (Interface unit and I/O unit are required.)

Selection samples of additional function modules
(\bigcirc :required optional modules)

Additional function Name			Extension module	Display	VT unit	Interface unit		
			EX1	DP1 or/and DP2	VT	BIF-CC	BIF-PR	BIF-MD
Load current	Display		\bigcirc	\bigcirc				
	Communication	CC-Link®	\bigcirc			\bigcirc		
		PROFIBUS-DP	\bigcirc				\bigcirc	
		MODBUS®	\bigcirc					\bigcirc
	Display \& Communication	CC-Link®	\bigcirc	\bigcirc		\bigcirc		
		PROFIBUS-DP	\bigcirc	\bigcirc			\bigcirc	
		MODBUS®	\bigcirc	\bigcirc				\bigcirc
Voltage Power Energy Harmonics current etc.	Display		\bigcirc	\bigcirc	\bigcirc			
	Communication	CC-Link®	\bigcirc		\bigcirc	\bigcirc		
		PROFIBUS-DP	\bigcirc		\bigcirc		\bigcirc	
		MODBUS®	\bigcirc		\bigcirc			\bigcirc
	Display \& Communication	CC-Link®	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		PROFIBUS-DP	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
		MODBUS®	\bigcirc	\bigcirc	\bigcirc			\bigcirc
					VT unit (placed separately)		BIF-PR unit (place	BIF-MD arately)

Electronic trip relay (ETR) Type designation breakdown

Extension module (EX1)

Option

This is the base module that provides various additional functions with combining Display module
 (DP1 / DP2), Interface unit (BIF-CC / BIF-PR / BIF-MD) and VT unit (VT).

1 Various measuring elements, high measuring accuracy
By adopting high-performance ASIC, various measuring elememts (load current, voltage, energy, harmonics, etc.) and high measuring accuracy are attained. Refer to page 34 for more details.

2 Communication function
With the advanced internal communication function of this EX1 module, it is achieved rapid transmission of data between ETR and Displays or Interface units. Besides, it can be extended the function by connecting with Max. 2 display modules and 1 interface unit in parallel.

Display module (DP1/DP2)

Option

This is the module for display and setting of the various information like measured value, trip and alarm status, ETR status for display and output contacts setting etc...

There are 2 types of display module. One is the ETR attachment type (DP1). Another is the panel attachment type (DP2), which can be connected to extension terminals of control circuit with $2 m$ cable. 2 units of display modules (DP1 and DP2) can be attached on one breaker. (As for outline dimensions of DP2, refer to page 53.)

Note;

- Extension module (EX1) is required.
- VT unit (VT) is required to display the measured data except load current.

VT unit (VT)

Option

VT unit enables to measure voltages, powers, energies, harmonic currents and etc.

by connecting the ETR with Extension module (EX1).
(outline dimensions are shown in page 54.)

Note;

- The length of the cable attached for VT unit is 2 m .

Electronic trip relay

Network

Interface unit (BIF-CC/BIF-PR/BIF-MD)

Option

BIF-CC (CC-Link®)

BIF-PR (PROFIBUS-DP)

BIF-MD (MODBUS®(RS-485))

These Interface units can expand the future possibility in various communication and Intelligent control.
1 Applicable to various open networks.
These units are applicable to various open network systems such as CC-Link®, PROFIBUS-DP and MODBUS® (RS-485), which can be built in easily.

2 Intelligent control by Multi-data communication
It comes into being the Intelligent control by Multi-data communication through these interface units to PLC/SCADA, which transfer the measurement Information, setting values, error information and trip and alarm informations.

The length of the cable for interface unit is 2 m .

Note:

- Extension module (EX1) is required.
- VT unit (VT) is required to transmit the measured data except load current.

I/O unit (BIF-CON)

Option

The Input \& Output Controlling Unit (BIF-CON) is available for the remote controlling and remote monitoring of the breaker condition through the various network systems.
With this BIF-CON unit in addition to the Interface Unit, it become possible to control the breaker

BIF-CON remotely, like a ON or OFF operations or Spring-charging.

Function	Description	Note
Control	Breaker ON operation	1a contact for Closing coil (CC)
	Breaker OFF operation	1a contact for Shunt trip device (SHT) (not applicable for AC380-500V rating)
	Spring charge	1a contact for Motor charging (MD)
Digital Input (DI) monitoring	For BIF-CC and BIF-MD, Max. 3 contacts monitoring are available. For BIF-PR, 1 contact monitoring is available.	

Drawout position switch (BIF-CL)

Option

BIF-CL

With this Drawout position switch (BIF-CL) in addition to Interface unit and I/O unit (BIF-CON), the remote monitoring of draw-out position become available in case of the breaker draw-out type.

Function	Description	Note
Monitor	Breaker Drawout position	Position : Connect or Test or Disconnect

\bigcirc : can be displayed by DP1/DP2 ${ }^{\text {: can }}$ be displaye																								
Combination sample																								
Type	- (3) ;EX1;DP1(;DP2)												(1) (2) - (3)							$; \text { EX1;DP1 (;DP2),VT }$				
(1)Main setting module	WS / WF				WM				WB				WS / WF				WM				WB			
(2) Optional setting module	NA	AP	G1	E1																				
(3)Power supply	P1~P5												P1~P5											
Measurement																								
Load current ($\pm 2.5 \%$)	\bigcirc												\bigcirc											
Leakage current ($\pm 15 \%)^{\text {Note 4) }}$	-	-	-	\bigcirc																				
Voltage ($\pm 2.5 \%$)	-												\bigcirc											
Power (active,reactive,apparent) ($\pm 2.5 \%$)	-												\bigcirc											
Power factor ($\pm 5 \%$)	-												\bigcirc											
Energy (active,reactive) ($\pm 2.5 \%$)	-												\bigcirc											
Harmonics current ($\pm 2.5 \%$)	-												(3.5...19th)											
Frequency ($\pm 2.5 \%$)	-												\bigcirc											
Trip history																								
LTD	\bigcirc				\bigcirc				-				\bigcirc				\bigcirc				-			
STD	\bigcirc				\bigcirc				-				\bigcirc				\bigcirc				-			
INST	\bigcirc												\bigcirc											
GFR	-	-	\bigcirc	-																				
ER	-	-	-	\bigcirc																				
UVT	\bigcirc Note 2)												\bigcirc Note 2)											
Alarm history																								
PAL1	\bigcirc												\bigcirc											
PAL2	-	\bigcirc	-	-																				
OVER	\bigcirc												\bigcirc											
GFR	-	-	\bigcirc	-	-	\bigcirc		-	-	-	\bigcirc	-												
EPAL	-	-	-	\bigcirc																				
ER	-	-	-	\bigcirc	-	- -		\bigcirc	-	-	-	\bigcirc												
TAL	Note 3)												O Note 3)											
Characteristic setting (panel attachment product [DP2] only)																								
LTD		\bigcirc			\bigcirc				-				\bigcirc				\bigcirc				-			
STD	\bigcirc				\bigcirc				-					\bigcirc			\bigcirc				-			
INST	\bigcirc												\bigcirc											
PAL1	\bigcirc												\bigcirc											
PAL2	-	\bigcirc	-	-																				
GFR	-	-	\bigcirc	-																				
EPAL	-	-	-	\bigcirc																				
ER	-	-	-	\bigcirc																				
Setting																								
Contact outputs setting change	\bigcirc												-											
Date \& Time	\bigcirc												-											
Demand time	\bigcirc												\bigcirc											
Alarm holding method	\bigcirc												\bigcirc											
Reset																								
Trip and alarm information	\bigcirc												\bigcirc											
Measurement information (min. and max. values)	-												\bigcirc											
ETR information																								
Main / Optional setting module information	\bigcirc												\bigcirc											
Error information	\bigcirc												\bigcirc											
CT rating (In)	\bigcirc												\bigcirc											
Phase line method	\bigcirc												\bigcirc											
Normal connection or reverse connection	\bigcirc												\bigcirc											

Note 1) 2 units of display modules can be attached.
Note 2) Display is available only when UVT module is attached
Note 3) Display is available only when TAL sensor is attached.
Note 4) Included the accuracy of ZCT.

Electronic trip relay

Electronic trip relay circuit diagram

(1) Power supply CT

Energy is supplied for the operation of the overcurrent tripping and ground fault tripping(GFR) function of the electronic trip relay.
(2) Current sensor coil

The current in each phase flowing through the breaker is detected. A air core coil which has good linearity is adopted.

Power supply circuit

This part converts power supply CT energy to constant voltage for respective circuits in the ETR.
ASIC
This ASIC ampplifies the signal detected by the current sensor coil and the detected signal of ground fault current which is vector composed from the detected signals of each phases.
(5) Microprocessor

The microprocessor integrates each phase current waveforms from the ASIC and performs processing for overcurrent protection and others.
(6) Characteristic setting module

The module for the characteristic setting of the ETR.
(7) Several LEDs

The load current LED give a figure of current in percent by CT energy.
Trip indicator and pre-alarm are indicated by control power supply.
RUN and ERR. LED indicate breaker's condition by control power supply or ten-odd percent of CT energy.
(8) Power supply with contact output

This outputs contact signal at fault cause (including pre-alarm) and at other alarms.
A control supply is necessary for this function.

Setting procedure

Operating hole for resetting

1 Prepare a small flat tipped screwdriver.

2 Insert the flat tipped screwdriver into the opening of the ETR cover. Then, lightly turn the screwdriver to the upside as shown in the left figure, and the ETR cover will open.

3 There are two kinds of switches for characteristics setting and for trip indicator reset. They should be used as follows.
(1) Adjustable in steps

Rotary code switch is used. Do not set the switch at points between steps. The setting value is same when the switch is positioned at the thick line. (Set the switch with a torque of $0.02 \mathrm{~N} \cdot \mathrm{~m}$ or below.)
Note) If the switch is set at points between steps, the characteristics setting value will be decided at either end of steps.
(2) Push-button

This is for temporary operation, and press it with force of 3 N or less.

4 When the characteristic is set up, use a device like a field tester, etc to make sure that the required characteristic has been set.

5 At sealing, seal the ETR cover by using the sealing hole at the top of the ETR cover.

Wiring diagram

- The following diagram shows the case that accessories are fully equipped.

Control circuit terminal block Terminal placement

VT $\square_{\text {vT unit }}$	N1	Z1	RS1	513	564	544	524	P1	97	C1	A1	DT1	D1	413	U1	51	41	31	21	11	53	43	33	23	13
	N2	Z2	RS2	P4	574	554	534	P2	98	C2	A2	DT2	D2	414	U2	52	42	32	22	12	54	44	34	24	14

Extended terminal

Fig. 1
UVT controller wiring

100-120V AC type 200-240V AC type DC types	380-460V AC type

Note;

- On the drawout type, the cables should have the length which allow the control circuit terminal block to be moved to the left or right by 5 mm .
- When a coil load is connected in the same control circuit as the ETR, surge absorbers are required to absorb the surge voltage.
- OCR alarm (AL)

The contact output of the OCR alarm(Standard type AL) is the one-pulse output and the output time is $30 \sim 50 \mathrm{~ms}$.
For this reason, this output needs self-holding circuit.

- For Power supply type P3 and P4, the high sensitive relay used in contact output may cause the chattering noise (wrong output of 1 ms level) during ON and OFF operation, depending on the Panel placing condition. When it used in the quick responsive sequence, the filter circuit of a few milli-second (ms) should be provided or the double reading sampling should be implemented.
- Closing coil (CC)

As CC is one-pulse driven, it is not necessary to insert AXb for burning prevention purposes. Inserting AXb will cause anti-pumping function to be ineffective.

- Under voltage trip device (UVT)

Use the switch that can open and close DC150V, 0.5A to remote trip.
Remote trip terminal has short bar at shipment, so remove it before using this function Disconnect the voltage input wires during dielectric testing of main circuit.

- Alarm contacts 513, 524~574 are also reset by removing P1, P2 power supply voltage. (longer than 1 sec .)
- From some terminals are polarized, the wiring should be done correctly as to the polarity shown in the wiring diagram when the control voltage is DC. Auxiliary switch (AX) Standard type has no polarity.
- Alarm reset (Terminal: RS1 and RS2) is available only for Power supply type P3, P4 and P5. In case of Power supply type P1 and P2, it can not be reset from the Control circuit terminal block (RS1 and RS2).

Outline dimensions

Drawout type AE630-SW,AE1000-SW, AE1250-SW, AE1600-SW

Rear view

Horizontal terminal

Vertical terminal

Front terminal

Main circuit terminal dimension

Horizontal terminal(standard)
Vertical terminal
Front terminal

Drawout type AE2000-SWA

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles

Side view

Rear view

Main circuit terminal dimension

Outline dimensions

Drawout type AE2000-SW, AE2500-SW, AE3200-SW

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles.

Side view

Rear view

Main circuit terminal dimensions

Horizontal terminal(standard)

Vertical terminal

Front terminal

Dimensions

Type	Wm
AE2000-SW AE2500-SW	95
AE3200-SW	103

Drawout type AE4000-SWA

Front view

*: Mounting pitch
The numerals shown in parentheses are for 3 poles

Rear view

Note) Spacers are not required when fastening connecting conductors (T10). The necessary contact area can be obtained with ACB terminal bent by tightening the screw.

Main circuit terminal dimension

Outline dimensions

Drawout type AE4000-SW, AE5000-SW, AE6300-SW

Rear view

Side view

Main circuit terminal dimension

Dimensions

Type	W	T
AE4000-SW AE5000-SW	100	20
AE6300-SW	105	25

The mounting angle should be prepared by the customer.

4P FN type

Fixed type AE630-SW, AE1000-SW, AE1250-SW, AE1600-SW

Front view

Rear view

Outline dimensions

Fixed type AE2000-SWA

Front view

: Mounting pitch
The numerals shown in
parentheses are for 3 poles.

Fixed type AE2000-SW, AE2500-SW, AE3200-SW

Front view

: Mounting pitch
The numerals shown in
parentheses are for 3 poles.

Outline dimensions

Fixed type AE4000-SWA

Front view

: Mounting pitch
The numerals shown in parentheses are for 3 poles.

Rear view

3P

4P

Note) Spacers are not required when fastening connecting conductors (T10). The necessary contact area can be obtained with ACB terminal bent by tightening the screw.

Fixed type AE4000-SW, AE5000-SW, AE6300-SW

4P FN type

Rear view

Side view dimensions are same as 3 pole.

Outline dimensions

Panel cut-out, Drawout handle, Terminal adapter, Condenser trip device

Panel cut-out dimensions

Door frame panel cut-out dimensions

Panel cut-out dimensions Outline

Vertical terminal adapter

Front terminal adapter

Dimensions					(mm)
Type			C	D	T
AE630-SW~1600-SW	Fixed type	Up side	258.5	50	15
		Down side	145	50	15
	Drawout type		145	50	15
AE2000-SW,2500-SW	Fixed type	Up side	258.5	95	20
		Down side	145	95	20
	Drawout type		145	95	20
AE3200-SW	Fixed type	Up side	258.5	95	25
		Down side	145	95	25
	Drawout type		145	103	25

Neutral CT (NCT), External ZCT

ZCT with primary conductors

ZTA1200A (1200A)

ZTA2000A (2000A)

Outline dimensions

UVT external unit

ETR external units

Technical information

Pre-cautions when making connections

Use M12 bolts, plain washers, and spring lock washers to connect the conductor. There are various size plain washers, but use 24 mm or smaller outside diameter washers. The washers may overlap if too large washers are used.
It is recommended to apply silver plating on the contact surface of the conductor which is used to connect with the terminal of circuit breakers in order to prevent the increase of contact resistance due to moisture, etc. Tin plating or nickel plating may be applied, but quickly connect with the circuit breaker terminal if nickel plating is applied because nickel plating is less resistant to sulfur dioxide gas.
Clean the contact surface and securely tighten the bolts with a correct torque (M12: 40 to 50 $\mathrm{N} \cdot \mathrm{m}$).
The terminal which is applicable to connect the conductor is different depending on the shape of the terminal. Refer to the outline dimensions of P. 41 to P. 50 .

Standard tightening torque

Screw size	Tightening torque(N-m)
M12	$40 \sim 50$

Since fault current flowing through the conductors cause large electromagnetic forces,the conductors should be secured firmly, using the values in the below table as a reference. Max. distance between fixing support and ACB bus bar should be less than 200 mm .

Electromagnetic force in N per 1 m conductor (in the case of three phase short circuit)

Type	AE630-SW~ AE1600-SW	AE2000-SWA		$\begin{aligned} & \text { AE2000-SW~ } \\ & \text { AE3200-SW } \end{aligned}$	AE4000-SWA				$\begin{aligned} & \text { AE4000-SW~ } \\ & \text { AE6300-SW } \end{aligned}$	
				Drawout type	Fixed type					
		3-Pole	4-Pole		3-Pole	4-Pole	3-Pole	4-Pole		
Conductor distance(mm) Prospective fault current $\mathrm{kA}(\mathrm{pf})$	85	115	105		130	190	170	152	145	262
30(0.2)	7700	5700	6300	5100	3500	3900	4300	4500	2500	
42(0.2)	15100	11200	12200	9900	6800	7600	8500	8900	5000	
50(0.2)	21400	15800	17300	14000	9600	10700	12000	12600	7000	
65(0.2)	36100	26700	29300	23600	16200	18100	20200	21200	11800	
75(0.2)	-	-	-	31500	21500	24100	26900	28200	15800	
85(0.2)	-	-	-	40400	27600	30900	34500	36200	20000	
100(0.2)	-	-	-	-	-	-	-	-	27800	
130(0.2)	-	-	-	-	-	-	-	-	47000	

When selecting conductors to be connected to AE breakers, please ensure that they have a sufficient current capacity. Refer to the right table.

Conductor Size(IEC 60947-1; Ambient Temp. $40^{\circ} \mathrm{C}$, Open air)

Rated current Max.(A)	Connecting conductors(copper bus bar)		
	Arrangement	Quantity	Conductor size(mm)
630	With long surface vertical	2	40×5
1000		2	60×5
1250		2	80×5
1600		2	100×5
2000		3	100×5
2500		4	100×5
3150(3200)*1		3	100×10
$\left(\begin{array}{c} 4000 \\ \binom{\text { AE4000-SWA }}{\text { Drawout type }} \end{array}\right.$		4	150×10
$\begin{gathered} 4000 \\ \binom{\text { AE4000-SWA }}{\text { Fixed type }} \\ \hline \end{gathered}$		3	150×10
$\begin{gathered} 4000 \\ \text { (AE4000-SW) } \end{gathered}$		4	100×10
5000		4	150×10
6300		4	200×10

The left table shows the suitable connecting conductor size based on IEC 60947-1, which is assured from the test under Ambient temp. $40^{\circ} \mathrm{C}$, Open air and testing configuration as shown in the following drawing.

*1 The temperature rise of rated current 3200A conforms to the requirement of IEC 60947-1 for the connecting conductor size of a rated current 3150A. In case of more than 3200A, conductor sizes are not defined in IEC 60947-1.

Insulation distance

When a short-circuit current is interrupted, discharged hot gas blows out from the exhaust port of the arc extinguishing chamber, so provide a clearance as shown in the following table.

Note1:On the fixed type, maintenance is possible with
following clearance.

Note1:300mm or more clearance is necessary to inspect the arc-extinguishing chamber and contacts.
Note2:The wiring space reguired for the control terminal block.
Note3:When using mechanical interlock, door interlock ,etc., dimension B becomes larger.

Service conditions

1. Normal service condition

Under ordinary conditions the following normal working conditions are all satisfied, the AE Series air circuit breaker may be used unless otherwise specified.

1. Ambient temperature

A range of max. $+40^{\circ} \mathrm{C}$ to min. $-5^{\circ} \mathrm{C}$ is recommended.
And the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
2. Altitude
$2,000 \mathrm{~m}(6,600$ feet) or less
3. Environmental conditions

The air must be clean, and the relative humidity must be 85% or less at max. temp. $+40^{\circ} \mathrm{C}$. Do not use and store in atmospheres with sulfide gas and ammonia gas etc. ($\mathrm{H}_{2} \mathrm{~S} \leq 0.01 \mathrm{ppm}, \mathrm{SO} 2 \leq 0.1 \mathrm{ppm}, \mathrm{NH}_{3}<$ a few ppm.)
4. Installation conditions

When installing the AE Series air circuit breaker, refer to the installation instructions in the catalogue and instruction manual.
5. Storage temperature

A range of max. $+60^{\circ} \mathrm{C}$ to min. $-20^{\circ} \mathrm{C}$ is recommended to be stored.
And the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
6. Guideline for replacement

Within approx. 15 years.Please refer to the instruction manual.

2. Special service conditions

In case of special service condition, service life may become shorter in some cases.

1. Special environmental conditions High temperature and/or high humidity Corrosive gas
2. High ambient temperature

If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, the uninterrupted current rating will be reduced. Since the derating value is different depending on the applicable standard, refer to P58.
3. High altitude

Since the heat radiation rate is reduced for use at the $2,000 \mathrm{~m}$ or higher, accordingly the operating voltage, continuous current capacity and breaking capacity are derated.
Moreover the insulation durability is also decreased owing to the atmospheric pressure.
Please inquire us for further detail.

Guarantee

1. Free guarantee period

The free guarantee period of the product is one year from the day of purchase.

2. Scope of guarantee

(1) We will repair the product free of charge within the guarantee period on condition that it has been used under the standard working conditions in conformity with the operating conditions, operating procedures, environmental conditions and instructions specified in the catalogs, manuals and caution labels on the product body.
(2) In the following cases, the product will be repaired at your expense even within the free guarantee period.

- Failure caused by your improper storage or handling, carelessness or negligence
- Failure caused by inadequacies of installation
- Failure caused by mis-operation or improper modification
- Failure caused by external factors due to acts of God, such as fire and abnormal votage, and natural disasters, such as earthquake, windstorm and flood
- Failure caused by reasons that could not be foreseen on the level of science and technology at the time of delivery The term "guarantee" used in this section refers to the guarantee only of the delivered product. We are not liable to compensate for any damage induced by the failure of the delivered product.

3. Repair parts supplying period

The supply of the repair parts is warranted for 5 years after discontinuation of the production. The supply is terminated as soon as the repair parts run out after the 5 years.

Technical information

Internal resistance, reactance and power consumption (per pole)

Type	Connection	Internal resistance ($\mathrm{m} \Omega$)	Reactance ($\mathrm{m} \Omega$)	Power consumption (W)
AE630-SW	Fixed type	0.028	0.059	11
	Drawout type	0.042	0.089	17
AE1000-SW	Fixed type	0.026	0.060	26
	Drawout type	0.040	0.091	40
AE1250-SW	Fixed type	0.024	0.060	38
	Drawout type	0.038	0.091	60
AE1600-SW	Fixed type	0.016	0.063	41
	Drawout type	0.030	0.095	77
AE2000-SWA	Fixed type	0.016	0.063	64
	Drawout type	0.025	0.095	100
AE2000-SW	Fixed type	0.010	0.047	40
	Drawout type	0.020	0.071	80
AE2500-SW	Fixed type	0.008	0.047	50
	Drawout type	0.018	0.071	113
AE3200-SW	Fixed type	0.007	0.048	72
	Drawout type	0.014	0.072	143
AE4000-SWA	Fixed type	0.009	0.048	144
	Drawout type	0.015	0.072	240
AE4000-SW	Fixed type	0.010	0.038	160
	Drawout type	0.013	0.062	210
AE5000-SW	Fixed type	0.009	0.038	225
	Drawout type	0.011	0.062	275
AE6300-SW	Fixed type	0.008	0.038	318
	Drawout type	0.0085	0.062	340

The above values are applicable for one pole. (at brandnew product)

Deratings by ambient temperature

(Table 1) Deratings of Max. rated current by ambient temperature

Standard	IEC60947-2, BS, JIS C 8201-2-1 (Standard:40 $\left.{ }^{\circ} \mathrm{C}\right)$				
	LR, GL, BV, DNV, ABS, NK, CCS (Standard:45 ${ }^{\circ} \mathrm{C}$)				
Ambient Temperature	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
AE630-SW	630	630	630	630	630
AE1000-SW	1000	1000	1000	1000	1000
AE1250-SW	1250	1250	1250	1250	1200
AE1600-SW	1600	1600	1600	1550	1500
AE2000-SWA	2000	2000	1900	1800	1700
AE2000-SW	2000	2000	2000	2000	2000
AE2500-SW	2500	2500	2500	2450	2350
AE3200-SW	3200	3200	3200	3000	2900
AE4000-SWA	4000	4000	4000	3800	3600
AE4000-SW	4000	4000	4000	3900	3750
AE5000-SW	5000	5000	5000	5000	4750
AE6300-SW	6300	6300	5750	5500	5200

(Table 2) Deratings of Max. rated current by ambient temperature with Extension module, Display and Network
In case extension module (EX1), display (DP1) and network are attached, the following derating values shown in this table are applied.
(A)

Standard	IEC60947-2, BS, JIS C 8201-2-1 (Standard:40 ${ }^{\circ} \mathrm{C}$)		
	LR, GL, BV, DNV, ABS, NK, CCS (Standard:45 $\left.{ }^{\circ} \mathrm{C}\right)$		
Ambient Temperature	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
AE630-SW	630	630	630
AE1000-SW	1000	1000	1000
AE1250-SW	1250	1250	1250
AE1600-SW	1600	1600	1440
AE2000-SWA	2000	1900	1700
AE2000-SW	2000	2000	2000
AE2500-SW	2500	2500	2500
AE3200-SW	3200	3200	2880
AE4000-SWA	4000	3800	3600
AE4000-SW	4000	4000	3750
AE5000-SW	5000	5000	4750
AE6300-SW	6300	5750	5200

[^3]
Technical information

Discrimination table

AE-SW Series air circuit breakers provide easy selective co-ordination with branch circuit breakers. For selective co-crdinations, refer to the following table.

AC230V sym kA

- The values in the table represent the max.rated current for both Series AE-SW air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SW series air circuit
breakers instantaneous pick up is set to maximum.
breakers instantaneous pick up is set to maximum.
The numerals shown in parentheses are for AE-SW with MCR.(When set MCR).

- The values in the table represent the max.rated current for both Series AE-SW air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SW series air circuii
breakers instantaneous pick up is set to maximum.
-The numerals shown in parentheses are for AE-SW with MCR.(When set MCR).

Ordering information

Ordering information for Mitsubishi AE-SW series air circuit breaker
(General use…WS Type, Special use....WB Type, Protective coordination use....WF Type)

Mechanical accessories	\bigvee Push button cover(BC-L)
P15-16	Vounter(CNT)
	\square Cylinder lock(CYL)
	\square Door interlock(DI) Note11
	\square Terminal cover(TTC)
	\square Door frame(DF)
	\square Dust cover(DUC)
	\square Interphase barrier(BA) ${ }^{\text {Note12 } 2}$
	\square for 2units(MI2)
	\square Mechanical interlock(MI)
\square for 3units(MI3) Note11	

$\underset{\text { (COT) }}{{ }^{\text {P1 } 6} \boldsymbol{V}} \underset{\text { Condenser trip device }}{\text { Con }}$
Note1: In case of AE630-SW and AE2000-SW Low rating type, please specify CT rating Refer to Page 9 and Page 20.
Note2: There is a case to be derated by ambient temperature. Refer to Page 58. Note 3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: Refer to Page 11 and Page 41-43.
Note5: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows.
CL1: 1C CL2: 1C1D CL3: 1C1T1D CL4: 2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note7: Not available for WB1, WB2 and WB3 Main setting module.
N5 optional setting module is used for 3phase 4wires system. (4Pole breaker or 3pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: In case of Earth leakage protection, it is required External ZCT.
Note10: DC24V and DC48V are not available for AE4000-SWA 4P and AE4000-SW~AE6300-SW. Note11: The combined installation of DI and MI3 is not available.
Note12: Some module types are not provided BA. Refer to Page15.
Note13: Power Supply comes from the top terminals.
Note14: Power Supply comes from the bottom terminals.
Note15: Current capacity of the neutral poles
HN: 50\% of the rated current
FN: 100% of the rated current (See page 45, 50 for the outline and dimensions.)

Remark

Ordering information for Mitsubishi AE-SW series air circuit breaker (General use…WS Type, Special use…WB Type, Protective coordination use....WF Type)

Mechanical accessories	\square Push button cover(BC-L)
P.15-16	\square Counter(CNT)
	\square Cylinder lock(CYL)
	\square Door interlock(DI) Note11
	\square Terminal cover(TTC)
	\square Door frame(DF)
	\square Dust cover(DUC)
	\square Interphase barrier(BA) Note12
	\square for 2units(MI2)
	\square Mechanical interlock(MI)
\square for 3units(MI3) Note11	

p.16 \square	Condenser trip (COT)
	\square 100-110V AC
	$\square 200-220 \mathrm{~V} \mathrm{AC}$

Note1: In case of AE630-SW and AE2000-SW Low rating type, please specify CT rating. Refer to Page 9 and Page 20.
Note2: There is a case to be derated by ambient temperature. Refer to Page 58. Note 3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: Refer to Page 11 and Page 41-43.
Note5: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows.
CL1: 1C CL2: 1C1D CL3: 1C1T1D CL4: 2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note 7: Not available for WB1, WB2 and WB3 Main setting module.
N5 optional setting module is used for 3phase 4wires system. (4Pole breaker or 3pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: In case of Earth leakage protection, it is required External ZCT.
Note10: DC24V and DC48V are not available for AE4000-SWA 4P and AE4000-SW~AE6300-SW. Note11: The combined installation of DI and MI 3 is not available.
Note12: Some module types are not provided BA. Refer to Page15.
Note13: Power Supply comes from the top terminals.
Note14: Power Supply comes from the bottom terminals.
Note15: Current capacity of the neutral poles
HN: 50% of the rated current
FN: 100% of the rated current (See page 45, 50 for the outline and dimensions.)

Ordering information for Mitsubishi AE-SW series air circuit breaker (Generator protection use....WM Type)

Electrical accessoriesP.12-14	\square Auxiliary switchA and B contacts in the same quantity are used. Max. quanty) 5 eaca for A and B Bontacts\square Standard(AX $\square: 2$ or 4 or 6 or 8 or 10)\square High capacity(HAX $\square: 2$ or 4 or 6 or 8 or 10)
	Motor charging(MD) - \square 100-125V AC•DC
	200-250V AC • DC
	$\square 24 \mathrm{~V}$ DC
	$\square 48 \mathrm{~V}$ DC
	\square Closing coil(CC)$\square 100-250 \mathrm{~V} \mathrm{AC} \cdot$ DC $\square 24-48 \mathrm{~V} \mathrm{DC}$
	Shunt trip device (SHT)\square 100-250V AC \cdot DC \square \square
	Under voltage trip device(UVT)
	100-120V AC
	200-240V AC- Time delay
	380-460V AC- \square Inst(INST)
	$\square 24 \mathrm{~V}$ DC - $\square 0.5 \mathrm{~s}(05)$
	48 V DC - \square - \quad 3 $\mathrm{s}(30)$
	100-110V DC-
	$120-125 \mathrm{~V}$ DC
Mechanical accessoriesP. 15-16	\square Push button cover(BC-L)
	Counter(CNT)
	Cylinder lock(CYL)
	Door interlock(DI) Note11
	Terminal cover(TTC)
	Door frame(DF)
	Dust cover(DUC)
	\square Interphase barrier(BA) ${ }^{\text {Note 12 }} \square$ for 2units(M12)
	\square Mechanical interlock(MI) $\quad \square$ for 3units(M13) ${ }_{\text {Note11 }}$

[^4]
Remark

Country/Region	Corporation Name	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd.	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7777
Belarus	Tehnikon	Oktyabrskaya 19, Off. 705, BY-220030 Minsk, Belarus	+375 (0)17/210 4626
Belgium	Koning \& Hartman B.V.	Woluwelaan 31, BE-1800 Vilvoorde, Belgium	+32 (0)2 / 2570240
Chile	Rhona S.A.	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Vina del Mar, Chile	+56-32-2-320-600
China	Mitsubishi Electric Automation (China) Ltd.	Mitsubishi Electric Automation Building, No. 1386 Hongqiao Road, Shanghai,200336	+86-21-2322-3030
	Mitsubishi Electric Automation (China) Ltd. BeiJing Branch	9/F, Office Tower1 Henderson Centre 18 Jianguomennei Dajie DongCheng district BeiJing 100005	+86-10-6518-8830
	Mitsubishi Electric Automation (China) Ltd. ShenZhen Branch	Room 2512--2516, Great China International Exchange Square, Jintian Rd.S., Futian District, Shenzhen, 518034	+86-755-2399-8272
	Mitsubishi Electric Automation (China) Ltd. GuangZhou Branch	Room 1609, North Tower, The Hub Center, No.1068, Xing Gang East Road, Haizhu District, GuangZhou, China 510335	+86-20-8923-6730
	Mitsubishi Electric Automation (China) Ltd. ChengDu Branch	Block B, Room 407-408, Shangri-La Center Offeice Builiding , No. 9 BinJiang East Road, Chengdu, China 610021	+86-28-8446-8030
	Mitsubishi Electric Automation (Hongkong) Ltd.	10/F., Manulife Tower, 169 Electric Road, North Point, Hong Kong	+852-2887-8810
Colombia	Proelectrico Representaciones S.A.	Carrera 42 \# 75-367 Bod 109 Itagui Colombia	+57-4-4441284
Czech Republic	AUTOCONT CONTROL SYSTEMS S.R.O	Technologická 374/6, CZ-708 00 Ostrava - Pustkovec	+420 595691150
Denmark	BEIJER ELECTRONICS A/S	LYKKEGARDSVEJ 17, DK-4000 ROSKILDE	+45 (0)46/757666
Egypt	Cairo Electrical Group	9, Rostoum St. Garden City P.O. Box 165-11516 Maglis El-Shaab,Cairo - Egypt	+20-2-27961337
France	Mitsubishi Electric Europe B.V.	25, Boulevard des Bouvets, F-92741 Nanterre Cedex	+33 (0) $1 / 55685568$
Germany	Mitsubishi Electric Europe B.V.	Gothaer Str. 8, 40880 Ratingen, Germany	+49 (0) 2102 486-0
Greece	KALAMARAKIS - SAPOUNAS S.A.	IONIAS \& NEROMILOU STR., CHAMOMILOS ACHARNES, ATHENS, 13678 Greece	+30-2102 406000
	UTECO	5, MAVROGENOUS STR., 18542 PIRAEUS, Greece	+30-211-1206-900
Hungary	Meltrade Ltd.	Fertö utca 14. HU-1107 Budapest, Hungary	+36 (0)1-431-9726
India	Mitsubishi Electric India Private Limited	2nd Floor, Tower A\&B, Cyber Greens, DLF Cyber City, DLF Phase-III, Gurgaon - 122022 Haryana, India	+91-124-4630300
	Mititie Electric Co. Pvt. Ltd.	Plot No.32 G/F, Sector-6 IMT, Manesar, Haryana -122050, India	+91-124-469-5300
Indonesia	P. T. Sahabat Indonesia	P.O.Box 5045 Kawasan Industri Pergudangan, Jakarta, Indonesia	+62-(0)21-6610651-9
Ireland	Mitsubishi Electric Europe B.V.	Westgate Business Park, Ballymount, IRL-Dublin 24, Ireland	+353 (0)1-4198800
Israel	Gino Industries Ltd.	26, Ophir Street IL-32235 Haifa, Israel	+972 (0)4-867-0656
Italy	Mitsubishi Electric Europe B.V.	Viale Colleoni 7, I-20041 Agrate Brianza (MI), Italy	+39 039-60531
Kazakhstan	Kazpromavtomatika	ul. Zhambyla 28, KAZ - 100017 Karaganda	+7-7212-501000
Korea	Mitsubishi Electric Automation Korea Co., Ltd	1480-6, Gayang-Dong, Gangseo-Gu, Seoul, Korea	+82-2-3660-9572
Lebanon	Comptoir d'Electricite Generale-Liban	Cebaco Center - Block A Autostrade Dora, P.O. Box 11-2597 Beirut - Lebanon	+961-1-240445
Lithuania	Rifas UAB	Tinklu 29A, LT-5300 Panevezys, Lithuania	+370 (0)45-582-728
Malaysia	Mittric Sdn Bhd	No. 5 Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie 40150 Shah Alam,Selangor, Malaysia	+603-5569-3748
Malta	ALFATRADE LTD	99 PAOLA HILL, PAOLA PLA 1702, Malta	+356 (0)21-697-816
Maroco	SCHIELE MAROC	KM 7,2 NOUVELLE ROUTE DE RABAT AIN SEBAA, 20600 Casablanca, Maroco	+212661 451596
Myanmar	Peace Myanmar Electric Co.,Ltd.	NO137/139 Botahtaung Pagoda Road, Botahtaung Town Ship 11161,Yangon,Myanmar	+95-(0)1-202589
Nepal	Watt\&Volt House	KHA 2-65,Volt House Dillibazar Post Box:2108,Kathmandu,Nepal	+977-1-4411330
Netherlands	Imtech Marine \& Offshore B.V.	Sluisjesdijk 155, NL-3087 AG Rotterdam, Netherlands	+31 (0) 10-487-19 11
North America	Mitsubishi Electric Automation, Inc.	500 Corporate Woods Parkway, Vernon Hills, IL 60061 USA	+847-478-2100
Norway	Scanelec AS	Leivikasen 43B, NO-5179 Godvik, Norway	+47 (0)55-506000
Middle East Arab Countries \& Cyprus	Comptoir d'Electricite Generale-International- S.A.L.	Cebaco Center - Block A Autostrade Dora P.O. Box 11-1314 Beirut - Lebanon	+961-1-240430
Pakistan	Prince Electric Co.	2-P, GULBERG II,LAHORE - 54660 PAKISTAN	$\begin{array}{\|l} \hline+92-(0) 42-35752323 \\ +92-(0) 42-35753373 \end{array}$
Philippines	Edison Electric Integrated, Inc.	24th FI. Galleria Corporate Center, Edsa Cr. Ortigas Ave., Quezon City Metro Manila, Philippines	+63-(0)2-634-8691
Poland	Mitsubishi Electric Europe B.V. Polish Branch	Krakowska 50, 32-083 Balice, Poland	+48 (0) 126304700
Republic of Moldova	Intehsis SRL	bld. Traian 23/1, MD-2060 Kishinev, Moldova	+373 (0)22-66-4242
Romania	Sirius Trading \& Services SRL	RO-060841 Bucuresti, Sector 6 Aleea Lacul Morii Nr. 3	+40-(0)21-430-40-06
Russia	Mitsubishi Electric Europe B.V. Moscow Branch	52, bld. 3 Kosmodamianskaya Nab. 115054, Moscow, Russia	+7 495 721-2070
Saudi Arabia	Center of Electrical Goods	Al-Shuwayer St. Side way of Salahuddin Al-Ayoubi St. P.O. Box 15955 Riyadh 11454 - Saudi Arabia	+966-1-4770149
Singapore	Mitsubishi Electric Asia Pte. Ltd.	307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	+65-6473-2308
Slovakia	PROCONT, Presov	Kupelna 1/, SK - 08001 Presov, Slovakia	+421 (0)51-7580 611
	SIMAP	Jana Derku 1671, SK - 91101 Trencin, Slovakia	+421 (0)32 7430472
Slovenia	Inea RBT d.o.o.	Stegne 11, Sl-1000 Ljubljana, Slovenia	+386 (0)1-513-8116
South Africa	CBI-electric: low voltage	Private Bag 2016, ZA-1600 Isando Gauteng, South Africa	+27-(0)11-9282000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch	Carretera de Rubí 76-80, E-08190 Sant Cugat del Vallés (Barcelona), Spain	+34 (0)93-565-3131
Sweden	Euro Energy Components AB	Järnvägsgatan 36, S-434 24 Kungsbacka, Sweden	+46 (0)300-690040
Switzerland	TriElec AG	Muehlentalstrasse 136, CH-8201 Schafthausen	+41-(0)52-6258425
Taiwan	Setsuyo Enterprise Co., Ltd	5th FI., No. 105 , Wu Kung 3rd, Wu-Ku Hsiang, Taipei, Taiwan, R.O.C.	+886-(0)2-2298-8889
Thailand	United Trading \& Import Co., Ltd.	77/12 Bamrungmuang Road,Klong Mahanak Pomprab Bangkok Thailand	+66-223-4220-3
Tunisia	MOTRA Electric	3, Résidence Imen, Avenue des Martyrs Mourouj III, 2074 - EI Mourouj III Ben Arous, Tunisia	+216-71 474599
Turkey	GTS	Bayraktar Bulvarı Nutuk Sok. No:5, Posta Kutusu34384, TR-34775 Yukan Dudullu-Uemraniye, Istanbul, Turkey	+90 (0)216 5263990
United Kingdom	Mitsubishi Electric Europe B.V.	Travellers Lane, UK-Hatield, Herts. AL10 8XB, United Kingdom	+44 (0) 1707-276100
Uruguay	Fierro Vignoli S.A.	Avda. Uruguay 1274 Montevideo Uruguay	+598-2-902-0808
Venezuela	Adesco S.A.	Calle 7 La Urbina Edificio Los Robles Locales C y D Planta Baja, Caracas - Venezuela	+58-212-241-9952
Vietnam	CTY TNHH-TM SA GIANG	10th Floor, Room1006-1007,225 Tran Hung Dao St.,Co Giang Ward, Dist. 1,Ho Chi Minh City, Vietnam	+84-8-838-6727/28/29

For Safety : Please read the instruction manual carefully before using the products in this catalog. Wiring and connection must be done by the person have a specialized knowledge of electric construction and wiring.

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society

[^0]: - When the closing spring is completely charged, the charging indicator will show "CHARGED".
 - The indicator shows the ON or OFF state of the main contacts.
 - The breaker cannot be closed while the OFF button is being pressed. (Safety design)
 - OFF lock is available by padlock (See P7, P17) as standard.

[^1]: Upper table denote the case optional MCR function is included.

[^2]: Upper table denote the case optional MCR function is included.
 For WF relay, when Pre-alarm current Ip is set at "OVER", the Ip value is "Ir x 1.15".

[^3]: The above table shows the maximum rated current per each ambient temperature for drawout type breaker with vertical connection (at brandnew product), when breaker and bus bar are installed in open air.
 Connection bus bar is according to IEC60947-1. For AE3200-SW, AE4000-SWA, AE4000-SW, AE5000-SW and AE6300-SW, it is required to follow the manufacturer recommended size shown in Page 55.
 As for ambient temperature exceeding $60^{\circ} \mathrm{C}$, please inquire us.

[^4]: Condenser trip device $\square \square$ 100-110V AC
 (COT)
 Note1: Please specify current setting (Ir) from the specification table. Refer to Page 9 and 10.
 Note2: There is a case to be derated by ambient temperature. Refer to Page 58.
 Note3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
 Note4: Refer to Page 11 and Page 41-43.
 Note5: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows CL1: 1C CL2: 1C1D CL3: 1C1T1D CL4: 2C1T1D
 Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A
 Note7: N5 optional setting module is used for 3 phase 4 wires system.(4 Pole breaker or 3 pole breaker with Neutral CT)
 Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system
 Note9: In case of Earth leakage protection, it is required External ZCT
 Note10: DC24V and DC48V are not available for AE4000-SWA 4P and AE4000-SW~AE6300-SW.
 Note11: The combined installation of DI and MI3 is not available.
 Note12: Some module types are not provided BA. Refer to Page15.
 Note13: Power Supply comes from the top terminals.
 Note14: Power Supply comes from the bottom terminals.
 Note15: Current capacity of the neutral poles
 HN: 50% of the rated current
 FN: 100% of the rated current (See page 45, 50 for the outline and dimensions.)

